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ABSTRACT

Carrierdiffusionand thermal conduction play a fundamental rolein the operation ofhigh-power, broad-area scmi-

conductor lasers.Restrictcdgeometry, high pumping leveland dynamic instabilityIcad to inhomogeneous spatial

distributionof plasma density,temperature, as well as lightfield,due to strong light-matterinteraction.Thus,

modeling and simulation ofsuch optoelectronicdevicesrelyon detaileddescriptionsof carrierdynamics and energy

transport in the system.

A self-consistent description of lasing and heating in large-aperture, inhomogeneous edge: or surface-emitting

lasers (VCSELs) require couplcd diffusion equations for carrier density and temperature. In this paper, wc dcrive

such equations from the Boltzmann transport equation for the carrier distributions. The derivcd self- and mutual-

diffusion coeffÉcients are in general nonlinear functions of carrier density and temperature including many-body

interactions. Wc study the effects of many-body interactions on these coefficients, as well as the nonlinearity of

these cocfficients for large-area VCSELs. The effects of mutual diffusions on carrier mid temperature dist.ributions

in gain-guided VCSELs will be also presentcd.

Keywords: semiconductor laser, inhomogcneity, carrier diffusion: plasma heating effect, VCSEL

1. INTRODUCTION

In order to achieve higher semiconductor laser output power, two design rules are implementcd on chip lcvel broad

active area and arrayed structure. As it turns out, the right optical phase locking is needed to achieve efficient

generation of stable far-field laser output. 1 Both changes in the carrier density and temperature modulate the optical

phase through carrier-induced pilase shift, and the effect increases in importance o.s the active region enlarges. At

the stone time, requirements for more stringent control of the transverse-mode dynamics arise since mode spacing
decreases and more modes become dynamically active, as a result of this enlargemcnt and increase in current injcctlon

level. 2 In sddition.. : fil_roe.n, ration................... _nd more eomplov p:-tttern fo_matlon m_d .-1,,,,_,-,i,.__j........_ ocou-_ . as laser o,.._._...._,_.... *-o at h;gh,.

power level. 3-5 On the other hand, theoretical challenges faced in dt._cribing high-power, broad-a/'ea semiconductor

lasers at device-physics level are to fully understand the interplay of carrier dynamics aad laser field distribution as

the ultimate output quality of the laser beam depends on the near-field pattern and spatial phase relation. Since

stimulated interaction affects the former _,d carrier dynamics influences the latter, plus phase modulation and

locking become a sensitive function of the plasn,a temperature _ device size increases, in addition to the necessity
of a self-consistent frmnework for the description of an active device on the thermodynamic level, it is thus natural

to take the plasma temperature and nonlinearity of the physical system into account. Previous attempts to model

such a dynamic system involve both empirical method 2'4 and first-principle treatmentfi The adxmntage of the former

approach is easy manageability and computational economy, while the latter features fundamentai rigor and generic
inclusiveness. In contrast., a hydrodynamic model starts from first principle, retains part of its rigor and inclusiveness,

but allows greater numerical efficiency. The purpose of the present paper is to summarize such a model we have
developed from Boltzmann transport equations (BTEs), in parallel with the semiconductor Bloch equation (SBE),

discuss its impact on simulations, and present numerical results for gain-g-uided vertical-cavity surface-emitting l_sers

(VCSELs).
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This paper is organized as follows. In the next section, theoretical results will be summarized, and expressions

for self- and lnutual-diffusion cocfticicnts for carrier density arid plasma temperature will be given. Then, numerical

rcsuhs and discussions are presented, focusing on several major effects in our model. Finally, we will sum tip and
make some observations for future work.

2. THEORY

Now let us summarize the hydrodynamic model we have developed for the description of carrier dynamics in the
active region of a semiconductor quantum well (QW) laser. We start from the Boltzmann transport equations z

(BTEs) for the non-equilibrium carrier distributions n ° (k, _ for electrons (a = e) and holes (a = h) in parabolic

energy subbands, where k and Y are all two-dimensional vectors. Only one subband each is treated for electrons and

holes. Collisional contributions accounted for in the BTEs are the dominant ones: carricr-LO (longitudinal optical)

phonon scattering, intraband (both a-c_ and eh) carrier scattering. As a side note, carrier scattering is explicitly
retained before we make any assumptions and approximations, which is where our approach differ from others. 6,8

This unique feature allows a natural and convenient handling of ambipolar transport regime, as it turns out, in the
development of our model. Moment equation method 9 is used for derivation of the model. The nth-order moment

and associated current are defined by summing over all degrees of frc_xtom the non-equilibrium distribution function

with a corresponding weight function Fna as below,

'_ _ = hg/m_,. The firstwhere S is the active region area, F_ is 1, hf¢, and h_k_/2m¢,, for n = 0,1,2, respectively, and vg

three moments and currents are conventionally denoted as: density N a = ¢_, momentum/5_ = ¢_, energy E '_ _ ¢_;

density current av_ - _a, momentum current ,f_, = _a, energy current f_ = ,_a. Then, it is straightforward to show

that the first three moment equations can be written as

0tN a + 0e. J_v = R_, (2)

_Ot -*(2l

OtP '_ + 0,,. J# + N'_Oe(be '_ + q_'¢b) = R# + OtPaleh + OtPC'lLO , (3)

OrE '_ + Oe " J_ + Or(be _ + q_i_) . J_v = R_ + OtEaleh + OtE'_ILO , (4)

for electrons (a = e) and holes (a = h). The rigtit:hand-side terms are the results of summing up the corresponding

generation-recombination (g-r) terms in BTEs. Both intt'abaud (eh) and carrier-LG phonon (LO) scatterings couple

different moment equations.

It is worth noting that Eqs. (2-4) are exact, but not in closed form--the so-called hierarchy problem. As an

approximate solution, we assume quasi-equilibrium for the electron-hole plasma, as in fluid dynamics where a drifted
Maxwell distribution is assumed, t° We point out that the premise, of quasi-equilibrium, upon which further develop-

ment of our model is hinged, is well established in semiconductor laser theory, xH3 It means that electrons and holes

in the plasma, driven out of thermal balance by the laser field and external pumping, are individually described by

equilibrium distributions of their subsystems in an inertia frame of reference. The physical mechanism behind this

assumption is the ultrafast carrier intraband (c_-c_) scattering on the femtosecond time scale, t4 The quasi-equilibrium

is characterized by the drifted Fermi-Dirac (DFD) distributions, n k = f_(k -/_)) -= 1/{1 + exp[f_a(e__f:_ - #_)]},

where f¢_ is the drift wavevector and #_ is the chemical potential. The drift wavevector is related to the first order

moment and the ctmmical potential is given by carrier density and temperature. Thus, a total of six parameters for

the electron and hole distribution functions uniquely relate to the six moment variabics. With the aid of the known

functional form of the DFDs, the right-hand-side terms in Eqs. (2-4) therefore can be expressed in terms of carrier den-

sities, drift wavevcctors, _d temperatures. With all this and some symmetric considerations, the hierarchj/:problem
for nc,(k, r) is solved---the equations are closed. In contrast, the problem for the interband polarization p(k, r-) needs
more elaborate treatment is which will not be discussed here, as wc focus on carrier transport in this paper. Now the

currents, using the DFD functions, of various orders can bc easily shown to depend on the moments after dcfinlng the



thermalenergy,hysubtractingthe_kineticenergyfromtheenergy,accord!I?gto W a = E a - Pc'. tic, �2too Nc,, where

]5_ = N '_hf¢_). Therefore, the relations between currents and moments allow us arriving at a closed set of equations

for {Na,to,W°}, a=elh. Furthermore, since the thermal energy is a fimction of carrier density and temperature,

we have the liberty to use another equivalent set of variablcs, {N°,ta,T,_}, a=clh, in which wc will derive the final

form of equations for plasma transport.

The resulting equations for {N °,/_o, f_Vo} are derived as follows, "after expressing the currents, the g-r terms, and

collisional terms in the moments,

o

OtN ° + 0¢. -- = R_v
7"glc,

2(Oe- ta)t c" (Pc'-O,'NC')- fia
O,tc, +

m,_N c' ma(No) 2

O'W° + O_" (2W_m_N_) - (Oe't_)(Pc')2:m_

+ OeI,V ° + N°Oe(Se ° + qc'ch) = R_ + o,P%,, + o,tc'lLo

t a • O_W a _. a_(P°) 2
+

maNe, 2m_(N°) 2
= + OtW 'l h + OtW"lzo

(5)

(6)

(7)

_0: Ot

where R_v = R_ + R_(Pa)_/2mc'(NC')2-P .I_p/mc'N , o,Wc,l . = OtE"leh-Ottc,l_h'tc,/mo, N% and a,W lLo =

OtEa[z.o - OtP°lLo • tc,/rnc,N _. Equations (5-7) are the general forms of the moment equations describing carrier

dynamics in a semiconductor laser, and should be solved together with Poisson equation, the polarization equations,

and Max-well equation. Terms {R_v, OtW°leh, OtWa[LO} differ by nonlinear terms in Pc" from {R_, OtEc'leh,

OtEa]LO}. As it turns out, Pc"s are proportional to the space gradients, so the differences can be neglected in case
of weak inhomogeneity. Furthermore, the set of equations above can be simplified by eliminating the momentum

equations (6) by resorting to the adiabatic approximation, s First, for weakly inhomogeneous systems, we can ignore

the nonlinear terms in re,though numerical_ they pose no problem. Then, the scattering terms can be linearized
in the first moment, as OtPa]_h = --%hm_(Pc,/mc, - tl_/m_) and OtP°]LO = --"f_.o ta, where a _ /3, %h is the

momentum relaxation rate due to intraband carrier scattering, mr=memh/(me + mh) i_ the reduced mass, and 7_.o

is the momentum relaxation rate due to carrier-LO phonon scattering. As a result, the solutions for the momenta

are given as

fa = ma'_eh _ [OeW a + NaOe (See" + qa(I))] _ ToLo(mc" + rn_) [OeW _ + NaOe (Sea + qa(I))] , (8)
o Tn ot c, m otc"+ + + "7 o o( o + + +

which has two terms with distinct physical meanings--the first one, due to intraband (eh) scattering, equilibrates

the two carrier subsystems, and the second one equilibrates each carrier subsystem with the LO phonons.

Now let us consider some limiting case that allows a one-component description of the plasma dynamics, i.e.,

the ambipolar regime. We have mentioned that the ultrafast intraband (a-a) scattering in the femtosecond range

is the physical mechanism that leads to the establishment of quasi-equilibrium within each subband. At the same

time, intraband (eh) scattering, which is on the same time scale, t°4T requires self-consistent treatment within the

framework of quasi-equilibrium, or we nccd to consider dynamic correlation between electrons and holes imposed by

the intraband (eh) scattering. Under the premise of quasi-equilibrium, detailed balance (DB) requires 15 that T_ = Th,

and hkeo/me = h_c_/rnh, which is intuitively clear since hk_/ma - _D is the drift velocity of the subsystem. These

two conditions are equivalent to the ambipolar approximation, since they will reduce the original two-component

problem to a 0ne-component one. However, to derive the ambipolar diffusion cocilicients, and understand when and

why the ambipolar approximation is valid, we need to look at this issue in more details. Specifically, we consider

the dynamics around the DB state by looking at the equations for momenta and energies with scattering terms
linearized around the DB state. As we see. from Eq. (8), the DB condition for the drift velocity tT_ is, in general, not

valid. Nevertheless, when _LO << ")'eh, the second term in Eq. (8) can be neglected, and it leads to the conclusion of

ff_) = ff_ = tT, if N e = N h = N. Thus, we have, in the ambipolar regime,

u = "feb Y_ (Oe Wa + NO'ca) . (9)
r _z

N c, Tir_ a +



Therefore,validityof tileambipolardiffusionapproxiination(ADA)fortwocomponentsofunequalmassesdemands
thattheintraband(inter-species)scatteringbenmchfasterthanscatteringbetweenLOphononsandeachcomponent
oftheplasma(electronsandholes).SinceLOphononscatteringdependssensitivelyontemperatureandtheintraband
scatteringondensity,it isclearthatADAwillnolongerbevalidathighplasmatemperatureandrelativelylowcarrier
density.Fornow,let uscontinuethediscussionof thelimitingcaseof theambipolarregime.Thehydrodynmnic
equalityof drift velocitiesof thecarriersubsystemsmeansthat N _ = iV h = N will be conserved if we prepare

the system neutrally initially, as indicated from the equation of continuity, Eq. (2). Let this be true, then, charge

neutrality eliminates the need for Poisson equation, and reduces the density equations for electrons and holes into

one for the carrier density N, that is

0t N + 0_. Js = RN. (10)

In the same spirit, we can show from Eq. (4) that Te = Th = Tp, as was found in Ref. 18 in case of a weak electric
field. This is exactly what the DB condition in quasi-equilibrium requires. We comment that tim equalities between

the two temperatures and the two drift momenta are the consequences of the quasi-equilibrium assumption when

the phonon scattering is much weaker than the intraband scattering. Using the total plasma energy in place of the

second moment and Eq.'(8), the equation for the second moment is given as follows,

OtW + Oe . fw = Rw + OtWILo , (11)

where IV = W _ + W h, Jw = 2Wff, RE = R_ + RaE, OtW[zo = OtEe]LO + OtEnlLO. In the above equation, weak

inhomogeneity has been assumed. To convert the above equation into plasma temperature, the functional dependence

of the thermal energy on carrier density and plasma temperature, W = W(N, Tv) is used, and the equation is found

as,

where JT = jw.fw - jNJN, jw = i/OTW, j_v = jw ONW.

The derived equations above, Eqs. (10,12), include many-body corrections and are applicable to neutral electron-

hole plasma in a semiconductor quantum well. UsingEq. (9), the diffusion coefficients can be determined in terms of

the macroscopic variables and microscopic quantities for the plasma. First, tile currents for-density and temperature
are given as JN = Nff and JT = (2jwW/N - jN)JN, where Jw = 2Wff is used. Then, in terms of the gradients of

plasma density and temperature, the coefficients are defined according to

(12)

JN =" --DNNO_N -- DNTOgTp , (13)

JT = -D_NOeN - D_-O,_Tp. (14)

Finally, after expressing the drift velocity, Eq. (9), in terms of the gradients of density and temperature, the diffusion

coefficients are straightforwardly obtained as

ONW + NONSeg O:rW + NO.l.Seg
DNN = DNT = , (15)

Fu ' Fu

_. W W
DTIV = (23w'w; -- jN)DsN , DTT = (2jw-;-; - jN)Dlvr , (16)

1¥ ly

where IV is the total thermal energy of the plasma, 5eg = 5@ + 5_h is the total Fock exchange correction to the
e h rnbandgap, and Fu - [3't.o'Tt.o( e + mh) -t- %h(me"f_o + mh_t_O)]/%h • Before moving on, we introduce the following

terminology for the diffusion coefficients for future discussions. The coefficient is dubbed self-diffusion when it

connects the gradient of a variable to its current, and mutual-diffusion otherwise. In addition, variable name is used

to label the coefficient that relates to the variable gradient. For example, DTN is called mutual-diffusion density

coefficient accordingly.



Tocompletethissection,wewritedownthemacroscopicpolarizationandlaserfieldequations,whicharetreated
asin Rcf.19.Thepolarizationisdecomposedto twoparts,electronicandbackground,asP = P0 + P1, where the

background contribution is given as Po = eoebxo(N, Tp, TI)E, and the electronic part is dynamically described by

OtP1 = {-r, (N,T,, T_)+ i[wc - wt (N, Tp, Tt)]}P - ieoebAt (N, Tp,Tt)g , (17)

where the parameters Xo, the effective background susceptibility, Ft, the gain bandwidth, ¢o1, and At, the Lorcntzian

oscillator strength, are fitted to microscopically computed values as a function of carrier density N, plasma temper-

ature Tp, and lattice temperature T_. 19 The laser field is described, after integrating over the assumed longitudinal

mode distribution, by

ivgKF P - r_ (18)0,E = _0_g__. + eeOeb

Standard notations are used in the above equations, for example, we is the central frequency, and F is the optical

mode confinement factor. Finally, the generation-recombination terms in Eqs. (10) and (12) are given as below,

R_v = -7_N + _/J LmF _(p.g)
e 4h

Bw = 71J AEg - Ns9 [(hAwc - ihTp)P*£ - iTN hOt P*g] ,
C

where Awe = wc - wt is the detuning, J is the injection current with a pumping profile and an quantum efficiency

71, Lm is the aggregate active region width, AEg is the bandgap offset, and N, is scaling constant of 101_ cm -2. In

tim equation for Rw, we neglect the generation-recombination contributions and the last term is derived in Ref. 20.
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Figure 1. _hndamental mode results with (open-circled solid line) and without (x-symbol dashed line) plasma

heating effects for a gain-guided circular InGaAs VCSEL. Shown here are the cross-sectional distributions through
the center.

3. SIMULATION RESULTS AND DISCUSSIONS

The simulations are run for a gain-guided InGaAs/GaAs VCSEL operating at Wc of 980 nm. Injection current profile

is circular with a diameter of 7.5 #m. The cavity length L is 144 nm and Lm is 36 nm, which yields a F of 0.25.

The other VCSEL parameters and simulation details can be found in Ref. 21. Except the carrier lifetime (1/'yN) of

2.5 ns, other rates are computed microscopically and fitted as a function of N, Tp, and Tt. Furthermore, we use an



injectioncurrentJ of 1.496 KA/cm 2, which is about 18% above the threshold current. And the lattice temperature

Tl is assumed to be a constant of 295 K throughout our sinmlations.

First, we demonstrate the necessity of including phasma temperature in order to accurately predict lasing per-

formance of the VCSEL. As shown in Fig. 1, plasma heating (middle panel) leads to roughly 40% reduction in the

near-field laser intensity (right panel) and a wcakcr spatial hole burning effect (left panel). The shoulder structure in

the plasma temperature distribution is attributed to the restrictive current pumping profile which is disk-like with

a dimneter of 7.5 #m constant pumping region in the middle and a smooth continuation area of total diameter of
13.5 #m. Beyond this region the pumping current is zero. As a result, insidc the middle region, injection heating

contributes to a higher plasma temperature, while in the continuation area a dip structure develops in the shoulder
and explanation is given in Subsection 3.3. Qualitatively, plasma heating effects cause gain degradation, carrier

density modification, weaker electronic susceptibility, and thus smaller laser intensity.
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Figure 2. Numerical results of diffusion coefficients in log-log scale. Insets (inIinear XY scale) show the percentage
corrections to the coefficients due to the many-body exchange interactions. Indicated are the nonlinear dependence

of the coefficients on carrier density and many-body effects on them. Results at three temperatures are shown: solid

line 200 K, dotted line -300 K, dot-dashed line 400 K.

3.1. Many-body effects on diffusion coefficients .......

We now discuss the many-body effects on the diffusion coefficients, owing to the attractive Coulomb interactions

between electrons and holes. Exhibited in the insets of Fig. 2, are the percentage change in the coefficients after the

Fock exchange term in Eqs. (15-16) is taken into account. The change is around 10% at typical III-V lasing density.

The dependence of the effects on density falls into two groups: D_vN and DTN VS D2VT and DTT. WTle former shows

a maximum below the density of 1012 cm -2 and weak dependence at high density, while the latter increases with

density. Thc difference dcrivcs from the dependence of the bandgap rcnormalization (BGR) term d_eg on density and
temperature. Our numerical results 22 for quasi-2D plasma in 8 nm GaAs/A1GaAs revealed a weaker than linear

relation power-law dependence for the BGR term on density in the free carrier regime. Similar results is expected

for the present material. In addition, at low density side, the BGR term increases with density faster than linear

dcpendence since the interaction increascs as inter-particle separation is reduced. The overall behavior of the former

group thus can be understood from these understanding. In comparison, the lattcr group is easier to understand,

since in the free carrier regime the magnitude of the BGI:t term incrcases with plasma temperature due to less effective

screening at higher temperature. As a result, the exchange correction increases in magnitude sub-linearly according
to our numerical results. 22 Furthermorc, data at three temperatures are shown: 200 K, 300 K, and 400 K. The figure

reveals that temperature reduces the many-body e-ffectsas well as improves the diffusivity of the plasma, which is

intuitively comprchcnsibIe. As temperature incrcases, the kinetic energy of a typical particle increases accordingly,

which leaves the barely changed interaction term less significm_t and makes the particle easier to diffuse around. This



iswhythe k_T factor appears in tile famous Einstein relation that connects diffusion coefficient and mobility of tlle

particle.
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Figure 3. Nonlinear diffusion effects of diffusion coefficient D/VN in the InGaAs VCSEL. Shown are temporal

evolution towards steady state (1 ns) under constant pumping and no laser field and plasma heating. See text for

curve style usage.

3.2. Nonlinearity effect

As demonstrated in Fig. 2, the diffusion coefficients are nonlinear functions of carrier density and plasma temperature.

In the case of a gain-guided device, the density varies drastically from the active region to the non-lasing area, over

a few orders of magnitude. Therefore, the nonlinearity in the coefficients is expected to influence the density and

temperature distributions. For illustrative purpose and simplicity, we only consider the nonlinearity in the coefficient

DNN and neglect the temperature equation totally. Further, we consider two scenarios under constant current
injection: without lasing (Fig. 3) and with lasing (Fig. 4). Four cases are studies for comparison in each scenario: (a)

full nonlinearity--solid line; and three linear cases (b) D,,VN = 108.24 cm2/s--dotted line; (c) 54.12 cm2/s--dashcd

line; and (d) 23.84 cm2/s--dot-dashed line. The values of the coefficient are chosen in the linear cases corresponding
to different densities and the same temperature of 300K: (b) 5x1012 cm-2; (c) 2.5x1012 cm-2; and (d) 7x1011 cm -2.
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Figure 4. Nonlinear effects of diffusion coefficient Dmv in the InGaAs VCSEL. Same as Fig. 3 except that laser
field is included. Note that, in the linear case with the largest coefficient (case b: dotted line), no lasing is predicted.



WediscussFig.3,thescenariowithonlycarrierdensitydiffusion,first. Shownarefoursnapshots(120ps,300
ps,600ps,and1ns)ofthetransientdynamicsoftheVCSELunderthesameinitial conditionandevolvingtowards
a steadystate(1ns). Notethat theinjectioncurrentis increasedto 10.8KA/cm2 accidentallyhcrcandhaveno
influenceonourcomparison.Clearly,the largerthecoefficient,themoresprcadcdout thedistribution,lowertile
centerpeak,andfasterthesteadystateapproached.Consequently, these effects impact on the lasing performance.

As wc look at Fig. 4 now, attention is called to curve b (dotted line), which has the largest coefficient and does not

lasc. The reason is simple: not enough gain available, as indicated in the 1 ns steady state data. The carrier density

at the peak position is below transparency as compared to curve c (dashed line). Summarily, the nonlinear effects

of the diffusion coefficients affect (1) the steady state distribution, (2) the transient dynamics, (3) threshold current,

mad thus (4) laser output power and spatial hole burning effect.
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Figure 5. Mutual-diffusion effects in a gain-guided InCaAs VCSEL. Solid curve with open circles includes mutual-

diffusion terms, and the dotted curve with x symbol is without those terms. In fundamental mode operation; no

discernable effect in the density and near-field distributions of the laser is shown. The dips in the shoulder structure

of the plasma temperature are gone when there are no mutual diffusions present.

3.3. Mutual diffusions between density and temperature

in ttiis study v,:e Mm to examine the inuportance of the m u_u_Sdif_si0n terms, first introduced by our model,

in the simulation. We compare two cases: with (open-circled solid line) and without (x-symbol dotted line) the

mutual-diffusion terms in Eqs. (13 and 14), as they appear in Eqs. (10) and (12). In fig. 5, the carrier density,

plasma temperature, and the near-field laser intensity are shown. In fundamental mode operation, under moderate

Current pumping leve[as we are using in the present Simulations, no discernable effects in the density and near-field
distributions of the laser are found. The reason is mainly that the coefficient values (refer to Fig. 2) tell that the

density gradient has a larger effect than the temperature gradient. This is corroborated in the temperature data

(center panel), as neglect of the mutual-diffusion terms changes its distribution and the dips in the shoulder structure
arc removed. This revelation also explains the cause of the dips. Finally, the extraordinary discontinuities in the

data outside of the shoulder structure in plasma temperature are due to numerical glitches and under investigation.

4. SUMMARY

In this paper, we summarize our recently dcvclopcd hydrodyn_ic model for scmiconductor lasers. The modcl

includes plasma heating effects_d is derived from first principle: In the case where carrier scattering predominates

over carrier-phonon scattering, an ambipolar regime is realized and the plasma canbc dcscribed like a one-component
physical system. This is the regime in which semiconductor lasers operate normally. We givc the expressions for

diffusion coefficients in this regime and investigate some major effects in our model for a exemplary, gain-guided,

Single-mode VCSEL with _ diameterof 7.5 #m: Nonlinear effects of One of the coefficients, D_;v, 0nthe performance

of the devicc under both non-lasing and lasing conditions are studied. It is found that the influence is appreciable in



accuratelypredictingtheperformanceof thedevice.Alsopointedout is tilenecessityof inclusionofplasmaheating
in thesimulationofsemiconductorlasers.Finally,westudytheeffe.ctofmutual-diffusioninteractionbetweencarrier
densityandplaslnatemperature,madtileeffectis foundto benegligible.Futurestudieswill considerindex-guided,
largerareaVCSELSandarrays.
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